Hybrid Organosilicate Low-k Dielectrics with Benzene Bridge Groups with Increased Mechanical Properties and Small Pore Size for Modern BEOL Metallization
- Авторлар: Rezvanov A.A.1, Vishnevskiy A.S.2, Seregin D.S.2, Lomov A.A.3, Vorotilov K.A.2, Baklanov M.R.2
-
Мекемелер:
- MERI
- MIREA – Russian Technological University
- Valiev Institute of Physics and Technology, RAS
- Шығарылым: Том 118, № 2 (2023): THEMED SECTION: FUNDAMENTAL PROBLEMS OF MULTILEVEL METALLIZATION SYSTEMS FOR ULTRA-LARGE INTEGRATED CIRCUITS
- Беттер: 13-30
- Бөлім: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/301041
- DOI: https://doi.org/10.22204/2410-4639-2023-118-02-13-30
- ID: 301041
Дәйексөз келтіру
Толық мәтін
Аннотация
In this work, the critical properties of a periodic mesoporous organosilicate dielectric with different ratios of benzene bridging and methyl groups are studied using various modern methods, such as ellipsometric porosimetry, surface acoustic wave spectroscopy, X-ray reflectometry, and others. It is shown that the pore size and surface roughness of the films decrease with an increase in the concentration of benzene groups, although at a concentration of >25 mol.%, the pore size sharply decreases and changes little with a further increase. With an increase in the concentration of benzene groups, the dielectric constant also increases and the mechanical properties improve. The increase in Young's modulus has a percolate behavior and increases sharply at a concentration close to 50 mol.%. It was found that the introduction of 30 wt.% porosity in films with benzene groups, in which there are no methyl groups, leads to an increase in Young's modulus. This behavior is associated with the formation of a crystal-like structure on the film framework. An increase in the dielectric constant is associated with the greater polarizability of benzene groups compared to methyl groups, as well as with their greater hydrophilicity and the presence of adsorbed water.
Негізгі сөздер
Авторлар туралы
Askar Rezvanov
MERI
Хат алмасуға жауапты Автор.
Email: arezvanov@niime.ru
Ресей, 6/1 Akademika Valieva Str., Moscow, Zelenograd, 124460, Russia
Alexey Vishnevskiy
MIREA – Russian Technological University
Email: vishnevskiy@mirea.ru
Ресей, 78 Vernadsky Ave., Moscow, 119454, Russia
Dmitry Seregin
MIREA – Russian Technological University
Email: d_seregin@mirea.ru
Ресей, 78 Vernadsky Ave., Moscow, 119454, Russia
Andrey Lomov
Valiev Institute of Physics and Technology, RAS
Email: lomov@ftian.ru
Ресей, 36/1 Nakhimovsky Ave., Moscow, 117218, Russia
Konstantin Vorotilov
MIREA – Russian Technological University
Email: vorotilov@mirea.ru
Ресей, 78 Vernadsky Ave., Moscow, 119454, Russia
Mikhail Baklanov
MIREA – Russian Technological University
Email: baklanovmr@gmail.com
Ресей, 78 Vernadsky Ave., Moscow, 119454, Russia
Әдебиет тізімі
- P. Van Der Voort, D. Esquivel, E. De Canck, F. Goethals, I. Van Driessche, F. J. Romero-Salguero Chem. Soc. Rev., 2013, 42(9), 3913. doi: 10.1039/C2CS35222B.
- A.M. Kaczmarek, S. Abednatanzi, D. Esquivel, C. Krishnaraj, H.S. Jena, G. Wang, K. Leus, R. Van Deun, F.J. Romero-Salguero, P. Van Der Voort Micropor. Mesopor. Mat., 2020, 291, 109687. doi: 10.1016/j.micromeso.2019.109687.
- D. Arcos, M. Vallet-Regí Acta Biomater., 2010, 6(8), 2874. doi: 10.1016/j.actbio.2010.02.012.
- Advanced Interconnects for ULSI Technology, Eds M.R. Baklanov, P.S. Ho, E. Zschech, UK, Chichester, Wiley, 2012, 608 pp. doi: 10.1002/9781119963677.
- V. Jousseaume, O. Gourhant, P. Gonon, A. Zenasni, L. Favennec J. Electrochem. Soc., 2012, 159(5), G49. doi: 10.1149/2.jes113605.
- J. Li, T.E. Seidel and J.W. Mayer MRS Bulletin, 1994, 19(8), 15. doi: 10.1557/S0883769400047692.
- A.S. Valeev, G.Ya. Krasnikov, V.A. Gvozdev, P.I. Kuznetsov Pat. Ru, 2548523, 2013.
- L. Zhang, J.-F. de Marneffe, N. Heylen, G. Murdoch, Z. Tokei, J. Boemmels, S. De Gendt, M.R. Baklanov Appl. Phys. Lett., 2015, 107, 092901. doi: 10.1063/1.4930072.
- K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, Z.S. Yanovitskaya J. Appl. Phys., 2003, 93, 8793. doi: 10.1063/1.1567460.
- B.D. Hatton, K. Landskron, W.J. Hunks, M.R. Bennett, D. Shukaris, D.D. Perovic, G.A. Ozin Mater. Today, 2006, 9(3), 22. doi: 10.1016/S1369-7021(06)71387-6.
- H. Li, J.M. Knaup, E. Kaxiras, J.J. Vlassak Acta Mater., 2011, 59, 44. doi: 10.1016/j.actamat.2010.08.015.
- J.A. Burg, M.S. Oliver, T.J. Frot, M. Sherwood, V. Lee, G. Dubois, R.H. Dauskardt Nat. Commun., 2017, 8(1), 1019. doi: 10.1038/s41467-017-01305-w.
- S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki Nature, 2002, 416(6878), 304. doi: 10.1038/416304a.
- A. Rezvanov, A. Vishnevskiy, D. Seregin, D. Schneider, A.A. Lomov, K.A. Vorotilov, M.R. Baklanov Mater. Chem. Phys., 2022, 290, 126571. doi: 10.1016/j.matchemphys.2022.126571.
- A.A. Maznev, A. Mazurenko, L. Zhuoyun, M. Gostein Rev. Sci. Instrum., 2003, 74, 667. doi: 10.1063/1.1512680.
- R.N. Nenashev, N.M. Kotova, A.S. Vishnevskii, K.A. Vorotilov Inorg. Mater., 2016, 52(6), 625. doi: 10.1134/S0020168516060108.
- A.S. Vishnevskiy, D.S. Seregin, K.A. Vorotilov, A.S. Sigov, K.P. Mogilnikov, M.R. Baklanov J. Solgel. Sci. Technol., 2019, 92(4), 273. doi: 10.1007/s10971-019-05028-w.
- E-B. Cho, K. Char Chem. Mater., 2003, 16(2), 270. doi: 10.1021/cm0346733.
- Y. Goto, S. Inagaki Chem. Commun., 2002, 20, 2410. doi: 10.1039/B207825B.
- M.R. Baklanov, K.P. Mogilnikov Microelectron. Eng., 2002, 64(1), 335. doi: 10.1016/S0167-9317(02)00807-9.
- A.G. Attallah, A.S. Vishnevskiy, M.O. Liedke, E. Hirschmann, M. Butterling, D.S. Seregin, A.A. Rezvanov, K.A. Vorotilov, M.R. Baklanov, A. Wagner In Proc. 12.5th International Workshop on Positron and Positronium Chemistry, (Internet, 30 August – 3 September, 2021), 2021 (https:// ppc12.5.umcs.pl/?page_id=502).
- M.R. Baklanov, V. Jousseaume, T.V. Rakhimova, D.V. Lopaev, Yu.A. Mankelevich, V.V. Afanas'ev, J.L. Shohet, S.W. King, E.T. Ryan Appl. Phys. Rev., 2019, 6(1), 011301. doi: 10.1063/1.5054304.
- P. Marsik, P. Verdonck, D. De Roest, M.R. Baklanov Thin Solid Films, 2010, 518(15), 4266. doi: 10.1016/j.tsf.2009.12.110.
- D.C. Hurley, V.K. Tewary, A.J. Richards Meas. Sci. Technol., 2001, 12, 1486. doi: 10.1088/0957-0233/12/9/315.
- A.D. Ross PhD Thes. in Chemical Engineering, Massachusetts Institute of Technology, USA, Boston, 2005, 119 pp.
- A.P. Dral, C. Lievens, J.E. ten Elshof Langmuir, 2017, 33(22), 5527. doi: 10.1021/acs.langmuir.7b00971.
- V.A. Pustovarov, A.F. Zatsepin, D.Y. Biryukov, V.S. Aliev, R.M.K. Iskhakzay, V.A. Gritsenko J. Non-Cryst. Solids, 2023, 602, 122077. doi: 10.1016/j.jnoncrysol.2022.122077.
- L. Skuja J. Non-Cryst. Solids, 1998, 239(1-3) 16. doi: 10.1016/S0022-3093(98)00720-0.
- R. Salh In Crystalline Silicon – Properties and Uses, USA, TX, Houston, IntechOpen Publ., 2011, pp. 135–172. doi: 10.5772/22607.
Қосымша файлдар
