Quantitative determination algorithm of acetylsalicylic acid by FTIR spectrometr

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Introduction. The article presents an algorithm for the quantitative determination of acetylsalicylic acid by Fourier-transform infrared (FTIR) spectroscopy in the mode of disturbed total internal reflection on the example of the analysis of mixtures similar to the composition of tablet dosage form. The study aims to develop an algorithm and a mathematical model based on the partial least squares (PLS) method. The proposed algorithm allows to exclude the stage of dissolution of samples, reduce the analysis time and can be adapted for the quantitative determination of other organic substances in solid dosage forms.

Objective. Development and approbation of an algorithm for the quantitative determination of acetylsalicylic acid in solid multicomponent mixtures using FTIR-spectrometry with a mathematical model based on the partial least squares method.

Material and Methods. The study was carried out on a model mixture of tablet mass, similar of tablets “Acetylsalicylic acid” 500 mg (OJSC “Dalchimpharm”). 30 calibration and 15 control samples were prepared by mixing acetylsalicylic acid substance with a mixture of excipients. IR spectra were recorded on a Cary 630 FTIR spectrometer (Agilent, USA) in the range of 4000-650 cm-¹ (resolution: 4 cm-¹). Data were processed in KNIME 4.5.7 using the Python 3.9.10 package and the scikit-learn 1.3.0 library. Processing stages: normalization, multiplicative scattering correction, separation of spectrometric data into training/test sets (in the ratio 70:30 according to the Kennard-Stone method), obtaining a calibration (“mathematical”) model by the PLS method, testing the predictive ability of the model on the test set, and testing the model on control samples of acetylsalicylic acid.

Results. The determination coefficient (r²) of the mathematical model when analyzing the test sample of spectrometric data was 0.97, which confirms its high predictive ability. When tested on control samples of acetylsalicylic acid, the relative deviation of the calculated concentration from the actual one did not exceed ±5%.

Conclusions. An algorithm for the quantitative determination of acetylsalicylic acid by infrared spectrometry in the mode of disturbed total internal reflection based on the partial least squares method was developed and tested. The relative deviation of ±5% in a wide range of concentrations indicates the applicability of the algorithm for the development of a technique for the quantitative analysis of acetylsalicylic acid by FTIR-spectrometry. Further optimization of spectrometric data processing in order to increase the predictive ability of mathematical models will allow to implement the algorithm in quality control of tablet dosage forms.

Sobre autores

A. Voronin

Samara State Medical University of the Ministry of Healthcare of the Russian Federation

Autor responsável pela correspondência
Email: a.v.voronin@samsmu.ru
ORCID ID: 0000-0002-8472-3796
Código SPIN: 5727-4822

Dr.Sc. (Pharm.), Institute of Pharmacy, Professor, Head of the Department of Chemistry

Rússia, 89 Chapaevskaya Street, Samara, 443099

D. Markin

Samara State Medical University of the Ministry of Healthcare of the Russian Federation

Email: d.n.markin@samsmu.ru
ORCID ID: 0009-0001-6376-6818
Código SPIN: 1565-9663

Institute of Pharmacy, Post-graduate Student, Department of Chemistry

Rússia, 89 Chapaevskaya Street, Samara, 443099

A. Karpov

Samara State Medical University of the Ministry of Healthcare of the Russian Federation

Email: al.v.karpov@samsmu.ru
ORCID ID: 0000-0002-0780-0241
Código SPIN: 5606-3506

Ph.D. (Pharm.), Institute of Pharmacy, Assistant, Department of Chemistry

Rússia, 89 Chapaevskaya Street, Samara, 443099

D. Zhdanov

Samara State Medical University of the Ministry of Healthcare of the Russian Federation

Email: d.a.zhdanov@samsmu.ru
ORCID ID: 0000-0002-8285-6296
Código SPIN: 1629-5490

Ph.D. (Pharm.), Institute of Pharmacy, Senior Lecturer, Department of Chemistry

Rússia, 89 Chapaevskaya Street, Samara, 443099

Bibliografia

  1. Johnson E.S., Lanes S.F., Wentworth C.E. et al. A metaregression analysis of the dose-response effect of aspirin on stroke. Archives of Internal Medicine. 1999; 159(11): 1248–1253. doi: 10.1001/archinte.159.11.1248.
  2. Государственная фармакопея Российской Федерации. XV издание. 2023. [Gosudarstvennaya Farmakopeya Rossiiskoi Federatsii. State Pharmacopoeia of the Russian Federation. 15th ed. 2023. (In Russ.)].
  3. Ahmad I., Vaid F.H. Determination of benzoic acid and salicylic acid in commercial benzoic and salicylic acids ointments by spectrophotometric method. Pakistan Journal of Pharmaceutical Sciences. 2009; 22(1): 18–22.
  4. Ambadekar S.R., Barabde G.R. Comparative Study of Estimation of Aspirin from Commercial Sample by UV-Visible Spectrophotometer and HPLC Method. IOSR Journal of Applied Chemistry (IOSR-JAC). 2014; 7(9): 57–61. doi: 10.9790/5736-7915761.
  5. Sawyer M., Kumar V. A rapid high-performance liquid chromatographic method for the simultaneous quantitation of aspirin, salicylic acid, and caffeine in effervescent tablets. Journal of Chromatographic Science. 2003; 41(8): 393–397. doi: 10.1093/chromsci/41.8.393.
  6. Rhodes H.J., Denardo J.J., Bode D.W. et al. Differentiating Nonaqueous Titration of Aspirin, Acetaminophen, and Salicylamide Mixtures. Journal of Pharmaceutical Sciences. 1975; 64(8): 1386-1388. doi: 10.1002/jps.2600640828.
  7. Paseková H., Sales M.G., Montegro M.C., et al. Potentiometric determination of acetylsalicylic acid by Sequential Injection Analysis (SIA) using a tubular salicylate-selective electrode. Journal of Pharmaceutical and Biomedical Analysis. 2001; 24(5–6): 1027–1036. doi: 10.1016/S0731-7085(00)00537-9.
  8. Aguiar J.L., Leandro K.Ch., Abrantes Sh. et al. Development of a new analytical method for determination of acetylsalicylic and salicylic acids in tablets by reversed phase liquid chromatography. Brazilian Journal of Pharmaceutical Sciences. 2009;45(4):723–727. doi: 10.1590/S1984-82502009000400016.
  9. Neuberger S., Jooß K., Ressel C., et al. Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS. Analytical and Bioanalytical Chemistry. 2016; 408(30): 8701–8712. doi: 10.1007/s00216-016-9734-2.
  10. Tan C., Chen H. Quantitative analysis of adulterated pear juice based on attenuated total reflectance mid-infrared spectroscopy and bagging PLS. Journal of Food Composition and Analysis. 2024; 125: 105766. doi: 10.1016/j.jfca.2023.105766.
  11. Bougeard S., Dolce P., Cariou V., Hanafi M. Prediction model for multiblock data with or without intermediate blocks. Estimation by PLS Path Modeling. Chemometrics and Intelligent Laboratory Systems. 2023; 243: 104813. doi: 10.1016/j.chemolab.2023.105016.
  12. Mas C., Rubio L., Valverde-Som L. et al. Impact of the pretreatment of ATR-FTIR signals on the figures of merit when PLS is used. Chemometrics and Intelligent Laboratory Systems. 2020; 201: 104018. doi: 10.1016/j.chemolab.2020.104006.
  13. Bensemmane N., Bouzidi N., Daghbouche Y. et al. Prediction of total phenolic acids contained in plant extracts by PLS-ATR-FTIR. South African Journal of Botany. 2022; 151(A): 295–305. doi: 10.1016/j.sajb.2022.10.009.
  14. Asghari A., Hosseini A.-H., Ghajarbeygi P. Fast and non-destructive determination of histamine in tuna fish by ATR-FTIR spectroscopy combined with PLS calibration method. Infrared Physics & Technology. 2022; 123: 104143. doi: 10.1016/j.infrared.2022.104093.
  15. KNIME. Accessed February 19, 2024; https://www.knime.com/.
  16. Python. Accessed February 19, 2024; https://www.python.org/.
  17. Scikit-learn. Accessed February 19, 2024; https://scikit-learn.org/stable/.
  18. Kennard R.W., Stone L.A. Computer-aided Design of Experiments. Technometrics. 1969; 11(1): 137–148.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. IR spectra of samples: A – acetylsalicylic acid reference materiala (acetylsalicylic acid concentration 100.0% (wt.)); Б – «Acetylsalicylic Acid», 500 mg tablet; В – excipient mixtures (acetylsalicylic acid concentration 0% (wt.))

Baixar (1007KB)
3. Fig. 2. Testing the predictive ability of a mathematical model for the quantitative determination of acetylsalicylic acid in mixtures similar to the composition of “Acetylsalicylic acid” 500 mg tablets

Baixar (114KB)
4. Fig. 3. Algorithm for the quantitative determination of acetylsalicylic acid in mixtures similar to the composition of «Acetylsalicylic acid» 500 mg tablets by FTIR

Baixar (145KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».