Knauf’s degree and monodromy in planar potential scattering
- Autores: Martynchuk N.1, Waalkens H.1
- 
							Afiliações: 
							- Johann Bernoulli Institute for Mathematics and Computer Science
 
- Edição: Volume 21, Nº 6 (2016)
- Páginas: 697-706
- Seção: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
- URL: https://ogarev-online.ru/1560-3547/article/view/218427
- DOI: https://doi.org/10.1134/S1560354716060095
- ID: 218427
Citar
Resumo
We consider Hamiltonian systems on (T*ℝ2, dq ∧ dp) defined by a Hamiltonian function H of the “classical” form H = p2/2 + V(q). A reasonable decay assumption V(q) → 0, ‖q‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg(E), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V(q) = W(‖q‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(E) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(E), which appears when the nontrapping energy E goes from low to high values.
Sobre autores
Nikolay Martynchuk
Johann Bernoulli Institute for Mathematics and Computer Science
							Autor responsável pela correspondência
							Email: N.Martynchuk@rug.nl
				                					                																			                												                	Países Baixos, 							Groningen, 9700 AK						
Holger Waalkens
Johann Bernoulli Institute for Mathematics and Computer Science
														Email: N.Martynchuk@rug.nl
				                					                																			                												                	Países Baixos, 							Groningen, 9700 AK						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					