Knauf’s degree and monodromy in planar potential scattering
- Авторлар: Martynchuk N.1, Waalkens H.1
-
Мекемелер:
- Johann Bernoulli Institute for Mathematics and Computer Science
- Шығарылым: Том 21, № 6 (2016)
- Беттер: 697-706
- Бөлім: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
- URL: https://ogarev-online.ru/1560-3547/article/view/218427
- DOI: https://doi.org/10.1134/S1560354716060095
- ID: 218427
Дәйексөз келтіру
Аннотация
We consider Hamiltonian systems on (T*ℝ2, dq ∧ dp) defined by a Hamiltonian function H of the “classical” form H = p2/2 + V(q). A reasonable decay assumption V(q) → 0, ‖q‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg(E), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V(q) = W(‖q‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(E) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(E), which appears when the nontrapping energy E goes from low to high values.
Авторлар туралы
Nikolay Martynchuk
Johann Bernoulli Institute for Mathematics and Computer Science
Хат алмасуға жауапты Автор.
Email: N.Martynchuk@rug.nl
Нидерланды, Groningen, 9700 AK
Holger Waalkens
Johann Bernoulli Institute for Mathematics and Computer Science
Email: N.Martynchuk@rug.nl
Нидерланды, Groningen, 9700 AK
Қосымша файлдар
