Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 23, № 1 (2018)

Article

Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: a Simple Proof and Extensions

de la Llave R.

Аннотация

A well-known result in complex dynamics shows that if the iterates of an analytic map are uniformly bounded in a complex domain, then the map is analytically conjugate to a linear map. We present a simple proof of this result in any dimension. We also present several generalizations and relations to other results in the literature.

Regular and Chaotic Dynamics. 2018;23(1):1-11
pages 1-11 views

Local Rigidity of Diophantine Translations in Higher-dimensional Tori

Karaliolios N.

Аннотация

We prove a theorem asserting that, given a Diophantine rotation α in a torus Td ≡ Rd/Zd, any perturbation, small enough in the C topology, that does not destroy all orbits with rotation vector α is actually smoothly conjugate to the rigid rotation. The proof relies on a KAM scheme (named after Kolmogorov–Arnol’d–Moser), where at each step the existence of an invariant measure with rotation vector α assures that we can linearize the equations around the same rotation α. The proof of the convergence of the scheme is carried out in the C category.

Regular and Chaotic Dynamics. 2018;23(1):12-25
pages 12-25 views

Linear Hamiltonian Systems: Quadratic Integrals, Singular Subspaces and Stability

Kozlov V.

Аннотация

A chain of quadratic first integrals of general linear Hamiltonian systems that have not been represented in canonical form is found. Their involutiveness is established and the problem of their functional independence is studied. The key role in the study of a Hamiltonian system is played by an integral cone which is obtained by setting known quadratic first integrals equal to zero. A singular invariant isotropic subspace is shown to pass through each point of the integral cone, and its dimension is found. The maximal dimension of such subspaces estimates from above the degree of instability of the Hamiltonian system. The stability of typical Hamiltonian systems is shown to be equivalent to the degeneracy of the cone to an equilibrium point. General results are applied to the investigation of linear mechanical systems with gyroscopic forces and finite-dimensional quantum systems.

Regular and Chaotic Dynamics. 2018;23(1):26-46
pages 26-46 views

Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

Martínez-Torres D., Miranda E.

Аннотация

We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

Regular and Chaotic Dynamics. 2018;23(1):47-53
pages 47-53 views

Nonisometric Domains with the Same Marvizi – Melrose Invariants

Buhovsky L., Kaloshin V.

Аннотация

For any strictly convex planar domain Ω ⊂ R2 with a C boundary one can associate an infinite sequence of spectral invariants introduced by Marvizi–Merlose [5]. These invariants can generically be determined using the spectrum of the Dirichlet problem of the Laplace operator. A natural question asks if this collection is sufficient to determine Ω up to isometry. In this paper we give a counterexample, namely, we present two nonisometric domains Ω and \(\bar \Omega \) with the same collection of Marvizi–Melrose invariants. Moreover, each domain has countably many periodic orbits {Sn}n≥1 (resp. \({\left\{ {{{\bar S}^n}} \right\}_{n \geqslant 1}}\)) of period going to infinity such that Sn and \({\bar S^n}\) have the same period and perimeter for each n.

Regular and Chaotic Dynamics. 2018;23(1):54-59
pages 54-59 views

Dynamics on the Double Morse Potential: A Paradigm for Roaming Reactions with no Saddle Points

Farantos S., Kramer Z., Wiggins S., Carpenter B., Ezra G.

Аннотация

In this paper we analyze a two-degree-of-freedom Hamiltonian system constructed from two planar Morse potentials. The resulting potential energy surface has two potential wells surrounded by an unbounded flat region containing no critical points. In addition, the model has an index one saddle between the potential wells. We study the dynamical mechanisms underlying transport between the two potential wells, with emphasis on the role of the flat region surrounding the wells. The model allows us to probe many of the features of the “roaming mechanism” whose reaction dynamics are of current interest in the chemistry community.

Regular and Chaotic Dynamics. 2018;23(1):60-79
pages 60-79 views

Stability of the Polar Equilibria in a Restricted Three-Body Problem on the Sphere

Andrade J., Vidal C.

Аннотация

In this paper we consider a symmetric restricted circular three-body problem on the surface S2 of constant Gaussian curvature κ = 1. This problem consists in the description of the dynamics of an infinitesimal mass particle attracted by two primaries with identical masses, rotating with constant angular velocity in a fixed parallel of radius a ∈ (0, 1). It is verified that both poles of S2 are equilibrium points for any value of the parameter a. This problem is modeled through a Hamiltonian system of two degrees of freedom depending on the parameter a. Using results concerning nonlinear stability, the type of Lyapunov stability (nonlinear) is provided for the polar equilibria, according to the resonances. It is verified that for the north pole there are two values of bifurcation (on the stability) \(a = \frac{{\sqrt {4 - \sqrt 2 } }}{2}\) and \(a = \sqrt {\frac{2}{3}} \), while the south pole has one value of bifurcation \(a = \frac{{\sqrt 3 }}{2}\).

Regular and Chaotic Dynamics. 2018;23(1):80-101
pages 80-101 views

Multiple Reductions, Foliations and the Dynamics of Cluster Maps

Cruz I., Mena-Matos H., Sousa-Dias M.

Аннотация

Reduction of cluster maps via presymplectic and Poisson structures is described in terms of the canonical foliations defined by these structures. In the case where multiple reductions coexist, we establish conditions on the underlying presymplectic and Poisson structures that allow for an interplay between the respective foliations. It is also shown how this interplay may be explored to simplify the analysis and obtain an effective geometric description of the dynamics of the original (not reduced) map. Consequences of the approach we developed to the description of several features of some cluster maps dynamics are illustrated by two examples which include the Somos-5 map and an instance of a Somos-7 map.

Regular and Chaotic Dynamics. 2018;23(1):102-119
pages 102-119 views

Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators

Stankevich N., Dvorak A., Astakhov V., Jaros P., Kapitaniak M., Perlikowski P., Kapitaniak T.

Аннотация

The dynamics of two coupled antiphase driven Toda oscillators is studied. We demonstrate three different routes of transition to chaotic dynamics associated with different bifurcations of periodic and quasi-periodic regimes. As a result of these, two types of chaotic dynamics with one and two positive Lyapunov exponents are observed. We argue that the results obtained are robust as they can exist in a wide range of the system parameters.

Regular and Chaotic Dynamics. 2018;23(1):120-126
pages 120-126 views

Dynamics of Three Vortices on a Sphere

Borisov A., Mamaev I., Kilin A.

Аннотация

This paper is concerned with the dynamics of vortices on a sphere. It is shown that, as a result of reduction, the problem reduces to investigating a system with a nonlinear Poisson bracket. The topology of a symplectic leaf in the case of three vortices is studied.

Regular and Chaotic Dynamics. 2018;23(1):127-134
pages 127-134 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».