Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
- Авторы: Martínez-Torres D.1, Miranda E.2,3
-
Учреждения:
- Department of Mathematics
- Department of Mathematics-UPC and BGSMath
- CEREMADE (Université de Paris Dauphine), IMCCE (Observatoire de Paris), and IMJ (Université de Paris Diderot)
- Выпуск: Том 23, № 1 (2018)
- Страницы: 47-53
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218907
- DOI: https://doi.org/10.1134/S1560354718010045
- ID: 218907
Цитировать
Аннотация
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
Ключевые слова
Об авторах
David Martínez-Torres
Department of Mathematics
Автор, ответственный за переписку.
Email: dfmtorres@gmail.com
Бразилия, 225, Gávea - Rio de Janeiro, CEP, São Vicente, 22451-900
Eva Miranda
Department of Mathematics-UPC and BGSMath; CEREMADE (Université de Paris Dauphine), IMCCE (Observatoire de Paris), and IMJ (Université de Paris Diderot)
Email: dfmtorres@gmail.com
Испания, Barcelona; 77 Avenue Denfert Rochereau, Paris, 75014
Дополнительные файлы
