Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
- Autores: Martínez-Torres D.1, Miranda E.2,3
- 
							Afiliações: 
							- Department of Mathematics
- Department of Mathematics-UPC and BGSMath
- CEREMADE (Université de Paris Dauphine), IMCCE (Observatoire de Paris), and IMJ (Université de Paris Diderot)
 
- Edição: Volume 23, Nº 1 (2018)
- Páginas: 47-53
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218907
- DOI: https://doi.org/10.1134/S1560354718010045
- ID: 218907
Citar
Resumo
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
Palavras-chave
Sobre autores
David Martínez-Torres
Department of Mathematics
							Autor responsável pela correspondência
							Email: dfmtorres@gmail.com
				                					                																			                												                	Brasil, 							225, Gávea - Rio de Janeiro, CEP, São Vicente, 22451-900						
Eva Miranda
Department of Mathematics-UPC and BGSMath; CEREMADE (Université de Paris Dauphine), IMCCE (Observatoire de Paris), and IMJ (Université de Paris Diderot)
														Email: dfmtorres@gmail.com
				                					                																			                												                	Espanha, 							Barcelona; 77 Avenue Denfert Rochereau, Paris, 75014						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					