Symplectic geometry of constrained optimization


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index. We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude.

Авторлар туралы

Andrey Agrachev

PSI RAS; SISSA

Хат алмасуға жауапты Автор.
Email: agrachevaa@gmail.com
Ресей, ul. Petra I 4a, Pereslavl-Zalessky, 152020; via Bonomea 265, Trieste, 34136

Ivan Beschastnyi

SISSA

Email: agrachevaa@gmail.com
Италия, via Bonomea 265, Trieste, 34136

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017