Symplectic geometry of constrained optimization
- 作者: Agrachev A.A.1,2, Beschastnyi I.Y.2
- 
							隶属关系: 
							- PSI RAS
- SISSA
 
- 期: 卷 22, 编号 6 (2017)
- 页面: 750-770
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218806
- DOI: https://doi.org/10.1134/S1560354717060119
- ID: 218806
如何引用文章
详细
In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index. We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude.
作者简介
Andrey Agrachev
PSI RAS; SISSA
							编辑信件的主要联系方式.
							Email: agrachevaa@gmail.com
				                					                																			                												                	俄罗斯联邦, 							ul. Petra I 4a, Pereslavl-Zalessky, 152020; via Bonomea 265, Trieste, 34136						
Ivan Beschastnyi
SISSA
														Email: agrachevaa@gmail.com
				                					                																			                												                	意大利, 							via Bonomea 265, Trieste, 34136						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					