Symplectic geometry of constrained optimization


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index. We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude.

作者简介

Andrey Agrachev

PSI RAS; SISSA

编辑信件的主要联系方式.
Email: agrachevaa@gmail.com
俄罗斯联邦, ul. Petra I 4a, Pereslavl-Zalessky, 152020; via Bonomea 265, Trieste, 34136

Ivan Beschastnyi

SISSA

Email: agrachevaa@gmail.com
意大利, via Bonomea 265, Trieste, 34136

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017