Normalization in Lie algebras via mould calculus and applications
- Авторы: Paul T.1, Sauzin D.2
- 
							Учреждения: 
							- CMLS, Ecole polytechnique, CNRS
- CNRS UMR 8028 – IMCCE
 
- Выпуск: Том 22, № 6 (2017)
- Страницы: 616-649
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218747
- DOI: https://doi.org/10.1134/S1560354717060041
- ID: 218747
Цитировать
Аннотация
We establish Écalle’s mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré–Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.
Ключевые слова
Об авторах
Thierry Paul
CMLS, Ecole polytechnique, CNRS
							Автор, ответственный за переписку.
							Email: thierry.paul@polytechnique.edu
				                					                																			                												                	Франция, 							Palaiseau Cedex, 91128						
David Sauzin
CNRS UMR 8028 – IMCCE
														Email: thierry.paul@polytechnique.edu
				                					                																			                												                	Франция, 							Paris, 75014						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					