Normalization in Lie algebras via mould calculus and applications
- Autores: Paul T.1, Sauzin D.2
- 
							Afiliações: 
							- CMLS, Ecole polytechnique, CNRS
- CNRS UMR 8028 – IMCCE
 
- Edição: Volume 22, Nº 6 (2017)
- Páginas: 616-649
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218747
- DOI: https://doi.org/10.1134/S1560354717060041
- ID: 218747
Citar
Resumo
We establish Écalle’s mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré–Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.
Palavras-chave
Sobre autores
Thierry Paul
CMLS, Ecole polytechnique, CNRS
							Autor responsável pela correspondência
							Email: thierry.paul@polytechnique.edu
				                					                																			                												                	França, 							Palaiseau Cedex, 91128						
David Sauzin
CNRS UMR 8028 – IMCCE
														Email: thierry.paul@polytechnique.edu
				                					                																			                												                	França, 							Paris, 75014						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					