Stability of Periodic Solutions of the N-vortex Problem in General Domains


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigate stability properties of a type of periodic solutions of the N-vortex problem on general domains Ω ⊂ ℝ2. The solutions in question bifurcate from rigidly rotating configurations of the whole-plane vortex system and a critical point a0 ∈ Ω of the Robin function associated to the Dirichlet Laplacian of Ω. Under a linear stability condition on the initial rotating configuration, which can be verified for examples consisting of up to 4 vortices, we show that the linear stability of the induced solutions is solely determined by the type of the critical point a0. If a0 is a saddle, they are unstable. If a0 is a nondegenerate maximum or minimum, they are stable in a certain linear sense. Since nondegenerate minima exist generically, our results apply to most domains Ω. The influence of the general domain Ω can be seen as a perturbation breaking the symmetries of the N-vortex system on ℝ2. Symplectic reduction is not applicable and our analysis on linearized stability relies on the notion of approximate eigenvectors. Beyond linear stability, Herman’s last geometric theorem allows us to prove the existence of isoenergetically orbitally stable solutions in the case of N = 2 vortices.

作者简介

Björn Gebhard

Universität Leipzig, Mathematisches Institut

编辑信件的主要联系方式.
Email: bjoern.gebhard@math.uni-leipzig.de
德国, Augustusplatz 10, Leipzig, 04109

Rafael Ortega

Universidad de Granada, Departamento de Matemática Aplicada

编辑信件的主要联系方式.
Email: rortega@ugr.es
西班牙, Granada, 18071

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019