Stability of Periodic Solutions of the N-vortex Problem in General Domains
- Авторлар: Gebhard B.1, Ortega R.2
- 
							Мекемелер: 
							- Universität Leipzig, Mathematisches Institut
- Universidad de Granada, Departamento de Matemática Aplicada
 
- Шығарылым: Том 24, № 6 (2019)
- Беттер: 649-670
- Бөлім: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219401
- DOI: https://doi.org/10.1134/S1560354719060054
- ID: 219401
Дәйексөз келтіру
Аннотация
We investigate stability properties of a type of periodic solutions of the N-vortex problem on general domains Ω ⊂ ℝ2. The solutions in question bifurcate from rigidly rotating configurations of the whole-plane vortex system and a critical point a0 ∈ Ω of the Robin function associated to the Dirichlet Laplacian of Ω. Under a linear stability condition on the initial rotating configuration, which can be verified for examples consisting of up to 4 vortices, we show that the linear stability of the induced solutions is solely determined by the type of the critical point a0. If a0 is a saddle, they are unstable. If a0 is a nondegenerate maximum or minimum, they are stable in a certain linear sense. Since nondegenerate minima exist generically, our results apply to most domains Ω. The influence of the general domain Ω can be seen as a perturbation breaking the symmetries of the N-vortex system on ℝ2. Symplectic reduction is not applicable and our analysis on linearized stability relies on the notion of approximate eigenvectors. Beyond linear stability, Herman’s last geometric theorem allows us to prove the existence of isoenergetically orbitally stable solutions in the case of N = 2 vortices.
Негізгі сөздер
Авторлар туралы
Björn Gebhard
Universität Leipzig, Mathematisches Institut
							Хат алмасуға жауапты Автор.
							Email: bjoern.gebhard@math.uni-leipzig.de
				                					                																			                												                	Германия, 							Augustusplatz 10, Leipzig, 04109						
Rafael Ortega
Universidad de Granada, Departamento de Matemática Aplicada
							Хат алмасуға жауапты Автор.
							Email: rortega@ugr.es
				                					                																			                												                	Испания, 							Granada, 18071						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					