Superintegrable models on Riemannian surfaces of revolution with integrals of any integer degree (I)
- Autores: Valent G.1
- 
							Afiliações: 
							- Laboratoire de Physique Mathématique de Provence
 
- Edição: Volume 22, Nº 4 (2017)
- Páginas: 319-352
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218648
- DOI: https://doi.org/10.1134/S1560354717040013
- ID: 218648
Citar
Resumo
We present a family of superintegrable (SI) systems which live on a Riemannian surface of revolution and which exhibit one linear integral and two integrals of any integer degree larger or equal to 2 in the momenta. When this degree is 2, one recovers a metric due to Koenigs.
The local structure of these systems is under control of a linear ordinary differential equation of order n which is homogeneous for even integrals and weakly inhomogeneous for odd integrals. The form of the integrals is explicitly given in the so-called “simple” case (see Definition 2). Some globally defined examples are worked out which live either in H2 or in R2.
Sobre autores
Galliano Valent
Laboratoire de Physique Mathématique de Provence
							Autor responsável pela correspondência
							Email: galliano.valent@orange.fr
				                					                																			                												                	França, 							Avenue Marius Jouveau 1, Aix-en-Provence, 13090						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					