Superintegrable models on Riemannian surfaces of revolution with integrals of any integer degree (I)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We present a family of superintegrable (SI) systems which live on a Riemannian surface of revolution and which exhibit one linear integral and two integrals of any integer degree larger or equal to 2 in the momenta. When this degree is 2, one recovers a metric due to Koenigs.

The local structure of these systems is under control of a linear ordinary differential equation of order n which is homogeneous for even integrals and weakly inhomogeneous for odd integrals. The form of the integrals is explicitly given in the so-called “simple” case (see Definition 2). Some globally defined examples are worked out which live either in H2 or in R2.

作者简介

Galliano Valent

Laboratoire de Physique Mathématique de Provence

编辑信件的主要联系方式.
Email: galliano.valent@orange.fr
法国, Avenue Marius Jouveau 1, Aix-en-Provence, 13090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017