Topological analysis corresponding to the Borisov–Mamaev–Sokolov integrable system on the Lie algebra so(4)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In 2001, A. V. Borisov, I. S. Mamaev, and V. V. Sokolov discovered a new integrable case on the Lie algebra so(4). This is a Hamiltonian system with two degrees of freedom, where both the Hamiltonian and the additional integral are homogenous polynomials of degrees 2 and 4, respectively. In this paper, the topology of isoenergy surfaces for the integrable case under consideration on the Lie algebra so(4) and the critical points of the Hamiltonian under consideration for different values of parameters are described and the bifurcation values of the Hamiltonian are constructed. Also, a description of bifurcation complexes and typical forms of the bifurcation diagram of the system are presented.

作者简介

Rasoul Akbarzadeh

Department of Fundamental Sciences

编辑信件的主要联系方式.
Email: Akbarzadeh.rasoul@gmail.com
伊朗伊斯兰共和国, 35 Km Tabriz-Maragheh Road, Tabriz

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016