Topological analysis corresponding to the Borisov–Mamaev–Sokolov integrable system on the Lie algebra so(4)
- Autores: Akbarzadeh R.1
- 
							Afiliações: 
							- Department of Fundamental Sciences
 
- Edição: Volume 21, Nº 1 (2016)
- Páginas: 1-17
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218169
- DOI: https://doi.org/10.1134/S1560354716010019
- ID: 218169
Citar
Resumo
In 2001, A. V. Borisov, I. S. Mamaev, and V. V. Sokolov discovered a new integrable case on the Lie algebra so(4). This is a Hamiltonian system with two degrees of freedom, where both the Hamiltonian and the additional integral are homogenous polynomials of degrees 2 and 4, respectively. In this paper, the topology of isoenergy surfaces for the integrable case under consideration on the Lie algebra so(4) and the critical points of the Hamiltonian under consideration for different values of parameters are described and the bifurcation values of the Hamiltonian are constructed. Also, a description of bifurcation complexes and typical forms of the bifurcation diagram of the system are presented.
Sobre autores
Rasoul Akbarzadeh
Department of Fundamental Sciences
							Autor responsável pela correspondência
							Email: Akbarzadeh.rasoul@gmail.com
				                					                																			                												                	Irã, 							35 Km Tabriz-Maragheh Road, Tabriz						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					