Generalized Contour Dynamics: A Review
- Authors: Llewellyn Smith S.G.1,2, Chang C.1, Chu T.1, Blyth M.3, Hattori Y.4, Salman H.3
-
Affiliations:
- Department of Mechanical and Aerospace Engineering
- Scripps Institution of Oceanography
- School of Mathematics
- Institute of Fluid Science
- Issue: Vol 23, No 5 (2018)
- Pages: 507-518
- Section: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219039
- DOI: https://doi.org/10.1134/S1560354718050027
- ID: 219039
Cite item
Abstract
Contour dynamics is a computational technique to solve for the motion of vortices in incompressible inviscid flow. It is a Lagrangian technique in which the motion of contours is followed, and the velocity field moving the contours can be computed as integrals along the contours. Its best-known examples are in two dimensions, for which the vorticity between contours is taken to be constant and the vortices are vortex patches, and in axisymmetric flow for which the vorticity varies linearly with distance from the axis of symmetry. This review discusses generalizations that incorporate additional physics, in particular, buoyancy effects and magnetic fields, that take specific forms inside the vortices and preserve the contour dynamics structure. The extra physics can lead to time-dependent vortex sheets on the boundaries, whose evolution must be computed as part of the problem. The non-Boussinesq case, in which density differences can be important, leads to a coupled system for the evolution of both mean interfacial velocity and vortex sheet strength. Helical geometry is also discussed, in which two quantities are materially conserved and whose evolution governs the flow.
About the authors
Stefan G. Llewellyn Smith
Department of Mechanical and Aerospace Engineering; Scripps Institution of Oceanography
Author for correspondence.
Email: sgls@ucsd.edu
United States, UCSD 9500 Gilman Drive, La Jolla, CA, 92093-0411; UCSD 9500 Gilman Drive, La Jolla, CA, 92093-0213
Ching Chang
Department of Mechanical and Aerospace Engineering
Email: sgls@ucsd.edu
United States, UCSD 9500 Gilman Drive, La Jolla, CA, 92093-0411
Tianyi Chu
Department of Mechanical and Aerospace Engineering
Email: sgls@ucsd.edu
United States, UCSD 9500 Gilman Drive, La Jolla, CA, 92093-0411
Mark Blyth
School of Mathematics
Email: sgls@ucsd.edu
United Kingdom, Anglia, NR4 7TJ
Yuji Hattori
Institute of Fluid Science
Email: sgls@ucsd.edu
Japan, Aoba, Sendai, 980-8577
Hayder Salman
School of Mathematics
Email: sgls@ucsd.edu
United Kingdom, Anglia, NR4 7TJ
Supplementary files
