Hyperbolic Chaos in Systems Based on FitzHugh – Nagumo Model Neurons
- Авторы: Kuznetsov S.P.1,2, Sedova Y.V.1
-
Учреждения:
- Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
- Udmurt State University
- Выпуск: Том 23, № 4 (2018)
- Страницы: 458-470
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219017
- DOI: https://doi.org/10.1134/S1560354718040068
- ID: 219017
Цитировать
Аннотация
In the present paper we consider and study numerically two systems based on model FitzHugh–Nagumo neurons, where in the presence of periodic modulation of parameters it is possible to implement chaotic dynamics on the attractor in the form of a Smale–Williams solenoid in the stroboscopic Poincaré map. In particular, hyperbolic chaos characterized by structural stability occurs in a single neuron supplemented by a time-delay feedback loop with a quadratic nonlinear element.
Ключевые слова
Об авторах
Sergey Kuznetsov
Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Udmurt State University
Автор, ответственный за переписку.
Email: spkuz@yandex.ru
Россия, ul. Zelenaya 38, Saratov, 410019; ul. Universitetskay 1, Izhevsk, 426034
Yuliya Sedova
Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
Email: spkuz@yandex.ru
Россия, ul. Zelenaya 38, Saratov, 410019
Дополнительные файлы
