Local normal forms of smooth weakly hyperbolic integrable systems
- Authors: Jiang K.1
-
Affiliations:
- Institut de Mathématiques de Jussieu — Paris Rive Gauche
- Issue: Vol 21, No 1 (2016)
- Pages: 18-23
- Section: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218176
- DOI: https://doi.org/10.1134/S1560354716010020
- ID: 218176
Cite item
Abstract
In the smooth (C∞) category, a completely integrable system near a nondegenerate singularity is geometrically linearizable if the action generated by the vector fields is weakly hyperbolic. This proves partially a conjecture of Nguyen Tien Zung [11]. The main tool used in the proof is a theorem of Marc Chaperon [3] and the slight hypothesis of weak hyperbolicity is generic when all the eigenvalues of the differentials of the vector fields at the non-degenerate singularity are real.
About the authors
Kai Jiang
Institut de Mathématiques de Jussieu — Paris Rive Gauche
Author for correspondence.
Email: kai.jiang@imj-prg.fr
France, 7050 Bâtiment Sophie Germain, Case 7012, Paris CEDEX 13, 75205
Supplementary files
