Local normal forms of smooth weakly hyperbolic integrable systems
- 作者: Jiang K.1
- 
							隶属关系: 
							- Institut de Mathématiques de Jussieu — Paris Rive Gauche
 
- 期: 卷 21, 编号 1 (2016)
- 页面: 18-23
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218176
- DOI: https://doi.org/10.1134/S1560354716010020
- ID: 218176
如何引用文章
详细
In the smooth (C∞) category, a completely integrable system near a nondegenerate singularity is geometrically linearizable if the action generated by the vector fields is weakly hyperbolic. This proves partially a conjecture of Nguyen Tien Zung [11]. The main tool used in the proof is a theorem of Marc Chaperon [3] and the slight hypothesis of weak hyperbolicity is generic when all the eigenvalues of the differentials of the vector fields at the non-degenerate singularity are real.
作者简介
Kai Jiang
Institut de Mathématiques de Jussieu — Paris Rive Gauche
							编辑信件的主要联系方式.
							Email: kai.jiang@imj-prg.fr
				                					                																			                												                	法国, 							7050 Bâtiment Sophie Germain, Case 7012, Paris CEDEX 13, 75205						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					