Bayesian Variance-Stabilizing Kernel Density Estimation Using Conjugate Prior


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Kernel-type density or regression estimator does not produce a constant estimator variance over the domain. To correct this problem, K. Nishida and Y. Kanazawa (2011, 2015) proposed a variance-stabilizing (VS) local variable bandwidth for kernel regression estimators. K. Nishida (2017) proposed another strategy to construct VS local linear regression estimator using a convex combination of three skewing estimators proposed by Choi and Hall (1998). In this study, we show that variance stabilization can be accomplished by a Bayesian approach in the case of kernel density estimator using conjugate prior.

作者简介

K. Nishida

General Education Center, Hyogo University of Health Sciences

编辑信件的主要联系方式.
Email: kiheiji.nishida@gmail.com
日本, 1-3-6, Minatojima, Chuo-ku, Kobe, Hyogo

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019