Bayesian Variance-Stabilizing Kernel Density Estimation Using Conjugate Prior
- Авторлар: Nishida K.1
-
Мекемелер:
- General Education Center, Hyogo University of Health Sciences
- Шығарылым: Том 237, № 5 (2019)
- Беттер: 712-721
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242439
- DOI: https://doi.org/10.1007/s10958-019-04197-x
- ID: 242439
Дәйексөз келтіру
Аннотация
Kernel-type density or regression estimator does not produce a constant estimator variance over the domain. To correct this problem, K. Nishida and Y. Kanazawa (2011, 2015) proposed a variance-stabilizing (VS) local variable bandwidth for kernel regression estimators. K. Nishida (2017) proposed another strategy to construct VS local linear regression estimator using a convex combination of three skewing estimators proposed by Choi and Hall (1998). In this study, we show that variance stabilization can be accomplished by a Bayesian approach in the case of kernel density estimator using conjugate prior.
Авторлар туралы
K. Nishida
General Education Center, Hyogo University of Health Sciences
Хат алмасуға жауапты Автор.
Email: kiheiji.nishida@gmail.com
Жапония, 1-3-6, Minatojima, Chuo-ku, Kobe, Hyogo
Қосымша файлдар
