Goldie Rings Graded by a Group with Periodic Quotient Group Modulo the Center
- 作者: Kanunnikov A.L.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 237, 编号 2 (2019)
- 页面: 284-286
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242329
- DOI: https://doi.org/10.1007/s10958-019-4155-3
- ID: 242329
如何引用文章
详细
In this paper, we study gr-prime and gr-semiprime Goldie rings graded by a group with periodic quotient group modulo the center. We enhance the theorem of Goodearl and Stafford (2000) about gr-prime rings graded by Abelian groups; we extend the Abelian group class to the class of groups with periodic quotient group modulo the center. We also decompose the orthogonal graded completion Ogr(R) of a gr-semiprime Goldie ring R (graded by a group satisfying the same condition) into a direct sum of gr-prime Goldie rings R1, . . . , Rn and prove that the maximal graded quotient ring Qgr(R) equals the direct sum of classical graded quotients rings of R1, . . . , Rn.
作者简介
A. Kanunnikov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: andrew.kanunnikov@gmail.com
俄罗斯联邦, Moscow
补充文件
