Goldie Rings Graded by a Group with Periodic Quotient Group Modulo the Center
- Авторлар: Kanunnikov A.L.1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: Том 237, № 2 (2019)
- Беттер: 284-286
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242329
- DOI: https://doi.org/10.1007/s10958-019-4155-3
- ID: 242329
Дәйексөз келтіру
Аннотация
In this paper, we study gr-prime and gr-semiprime Goldie rings graded by a group with periodic quotient group modulo the center. We enhance the theorem of Goodearl and Stafford (2000) about gr-prime rings graded by Abelian groups; we extend the Abelian group class to the class of groups with periodic quotient group modulo the center. We also decompose the orthogonal graded completion Ogr(R) of a gr-semiprime Goldie ring R (graded by a group satisfying the same condition) into a direct sum of gr-prime Goldie rings R1, . . . , Rn and prove that the maximal graded quotient ring Qgr(R) equals the direct sum of classical graded quotients rings of R1, . . . , Rn.
Авторлар туралы
A. Kanunnikov
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: andrew.kanunnikov@gmail.com
Ресей, Moscow
Қосымша файлдар
