Differential Equations with Degenerate Operators at the Derivative Depending on an Unknown Function


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We develop the theory of generalized Jordan chains of multiparameter operator functions A(λ) : E1→ E2, λ ∈ Λ, dimΛ = k, dimE1 = dimE2 = n, where A0 = A(0) is an irreversible operator. For simplicity, in Secs. 1–3, the geometric multiplicity of λ0 is equal to one, i.e., dimN(A0) = 1, N(A0) = span{φ}, dimN*(\( {A}_0^{\ast } \)) = 1, N*(\( {A}_0^{\ast } \)) = span{ψ}, and it is assumed that the operator function A(λ) is linear with respect to λ. In Sec. 4, the polynomial dependence of A(λ) is linearized. However, the results of existence theorems for bifurcations are obtained for the case where there are several Jordan chains. Applications to degenerate differential equations of the form [A0 + R, x)]x′= Bx are provided.

作者简介

B. Loginov

Ulyanovsk State Technical University

编辑信件的主要联系方式.
Email: panbobl@yandex.ru
俄罗斯联邦, Ulyanovsk

Yu. Rousak

Department of Social Service

Email: panbobl@yandex.ru
澳大利亚, Canberra

L. Kim-Tyan

National University of Science and Technology “MISiS”

Email: panbobl@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018