Differential Equations with Degenerate Operators at the Derivative Depending on an Unknown Function


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We develop the theory of generalized Jordan chains of multiparameter operator functions A(λ) : E1→ E2, λ ∈ Λ, dimΛ = k, dimE1 = dimE2 = n, where A0 = A(0) is an irreversible operator. For simplicity, in Secs. 1–3, the geometric multiplicity of λ0 is equal to one, i.e., dimN(A0) = 1, N(A0) = span{φ}, dimN*(\( {A}_0^{\ast } \)) = 1, N*(\( {A}_0^{\ast } \)) = span{ψ}, and it is assumed that the operator function A(λ) is linear with respect to λ. In Sec. 4, the polynomial dependence of A(λ) is linearized. However, the results of existence theorems for bifurcations are obtained for the case where there are several Jordan chains. Applications to degenerate differential equations of the form [A0 + R, x)]x′= Bx are provided.

Sobre autores

B. Loginov

Ulyanovsk State Technical University

Autor responsável pela correspondência
Email: panbobl@yandex.ru
Rússia, Ulyanovsk

Yu. Rousak

Department of Social Service

Email: panbobl@yandex.ru
Austrália, Canberra

L. Kim-Tyan

National University of Science and Technology “MISiS”

Email: panbobl@yandex.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018