Differential Equations with Degenerate Operators at the Derivative Depending on an Unknown Function
- Авторы: Loginov B.V.1, Rousak Y.B.2, Kim-Tyan L.R.3
-
Учреждения:
- Ulyanovsk State Technical University
- Department of Social Service
- National University of Science and Technology “MISiS”
- Выпуск: Том 233, № 6 (2018)
- Страницы: 875-904
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241715
- DOI: https://doi.org/10.1007/s10958-018-3971-1
- ID: 241715
Цитировать
Аннотация
We develop the theory of generalized Jordan chains of multiparameter operator functions A(λ) : E1→ E2, λ ∈ Λ, dimΛ = k, dimE1 = dimE2 = n, where A0 = A(0) is an irreversible operator. For simplicity, in Secs. 1–3, the geometric multiplicity of λ0 is equal to one, i.e., dimN(A0) = 1, N(A0) = span{φ}, dimN*(\( {A}_0^{\ast } \)) = 1, N*(\( {A}_0^{\ast } \)) = span{ψ}, and it is assumed that the operator function A(λ) is linear with respect to λ. In Sec. 4, the polynomial dependence of A(λ) is linearized. However, the results of existence theorems for bifurcations are obtained for the case where there are several Jordan chains. Applications to degenerate differential equations of the form [A0 + R(·, x)]x′= Bx are provided.
Об авторах
B. Loginov
Ulyanovsk State Technical University
Автор, ответственный за переписку.
Email: panbobl@yandex.ru
Россия, Ulyanovsk
Yu. Rousak
Department of Social Service
Email: panbobl@yandex.ru
Австралия, Canberra
L. Kim-Tyan
National University of Science and Technology “MISiS”
Email: panbobl@yandex.ru
Россия, Moscow
Дополнительные файлы
