A Discrete Nonlinear Schrödinger-Type Hierarchy, Its Finite-Dimensional Reduction Analysis, and the Numerical Integration Scheme


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigate the procedures of discretization of the integrable nonlinear Schrödinger dynamical system, well known as the Ablowitz–Ladik equation, the corresponding symplectic structures, and the finite-dimensional invariant reductions. We develop an efficient scheme of invariant reduction of the corresponding infinite system of ordinary differential equations to an equivalent finite system of ordinary differential equations with respect to the evolution parameter. We construct a finite set of recurrence algebraic regular relations that allows one to generate solutions of the discrete nonlinear Schrödinger dynamical system and discuss the related functional spaces of solutions. Finally, we analyze the Fourier-transform approach to the study of the set of solutions of the discrete nonlinear Schrödinger dynamical system and its functional-analytic aspects.

作者简介

A. Prykarpatski

AGH University of Science and Technology; I. Franko State Pedagogical University

编辑信件的主要联系方式.
Email: pryk.anat@cybergal.com
波兰, Krakow; Drohobych

J. Cieśliński

University of Białystok

Email: pryk.anat@cybergal.com
波兰, Lipowa Str. 41, Białystok, 15-424

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018