A Discrete Nonlinear Schrödinger-Type Hierarchy, Its Finite-Dimensional Reduction Analysis, and the Numerical Integration Scheme


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We investigate the procedures of discretization of the integrable nonlinear Schrödinger dynamical system, well known as the Ablowitz–Ladik equation, the corresponding symplectic structures, and the finite-dimensional invariant reductions. We develop an efficient scheme of invariant reduction of the corresponding infinite system of ordinary differential equations to an equivalent finite system of ordinary differential equations with respect to the evolution parameter. We construct a finite set of recurrence algebraic regular relations that allows one to generate solutions of the discrete nonlinear Schrödinger dynamical system and discuss the related functional spaces of solutions. Finally, we analyze the Fourier-transform approach to the study of the set of solutions of the discrete nonlinear Schrödinger dynamical system and its functional-analytic aspects.

Авторлар туралы

A. Prykarpatski

AGH University of Science and Technology; I. Franko State Pedagogical University

Хат алмасуға жауапты Автор.
Email: pryk.anat@cybergal.com
Польша, Krakow; Drohobych

J. Cieśliński

University of Białystok

Email: pryk.anat@cybergal.com
Польша, Lipowa Str. 41, Białystok, 15-424

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018