A Discrete Nonlinear Schrödinger-Type Hierarchy, Its Finite-Dimensional Reduction Analysis, and the Numerical Integration Scheme


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We investigate the procedures of discretization of the integrable nonlinear Schrödinger dynamical system, well known as the Ablowitz–Ladik equation, the corresponding symplectic structures, and the finite-dimensional invariant reductions. We develop an efficient scheme of invariant reduction of the corresponding infinite system of ordinary differential equations to an equivalent finite system of ordinary differential equations with respect to the evolution parameter. We construct a finite set of recurrence algebraic regular relations that allows one to generate solutions of the discrete nonlinear Schrödinger dynamical system and discuss the related functional spaces of solutions. Finally, we analyze the Fourier-transform approach to the study of the set of solutions of the discrete nonlinear Schrödinger dynamical system and its functional-analytic aspects.

Sobre autores

A. Prykarpatski

AGH University of Science and Technology; I. Franko State Pedagogical University

Autor responsável pela correspondência
Email: pryk.anat@cybergal.com
Polônia, Krakow; Drohobych

J. Cieśliński

University of Białystok

Email: pryk.anat@cybergal.com
Polônia, Lipowa Str. 41, Białystok, 15-424

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018