On Lower Estimates of Solutions and Their Derivatives to a Fourth-Order Linear Integrodifferential Volterra Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We examine solutions of the problem on sufficient conditions that guarantee a lower estimate and tending to infinity of solutions and their derivatives up to the third order to a fourth-order linear integrodifferential Volterra equation. For this purpose, we develop a method based on the nonstandard reduction method (S. Iskandarov), the Volterra transformation method, the method of shearing functions (S. Iskandarov), the method of integral inequalities (Yu. A. Ved’ and Z. Pakhyrov), the method of a priori estimates (N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, and P. M. Simonov, 1991, 2001), the Lagrange method for integral representations of solutions to first-order linear inhomogeneous differential equations, and the method of lower estimate of solutions (Yu. A. Ved’ and L. N. Kitaeva).

作者简介

S. Iskandarov

Institute of Theoretical and Applied Mathematics of the National Academy of Sciences of the Kyrgyz Republic

编辑信件的主要联系方式.
Email: mrmacintosh@list.ru
吉尔吉斯斯坦, Bishkek

G. Khalilova

Kyrgyz-Russian Academy of Education

Email: mrmacintosh@list.ru
吉尔吉斯斯坦, Bishkek

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018