On Lower Estimates of Solutions and Their Derivatives to a Fourth-Order Linear Integrodifferential Volterra Equation
- Авторы: Iskandarov S.1, Khalilova G.T.2
-
Учреждения:
- Institute of Theoretical and Applied Mathematics of the National Academy of Sciences of the Kyrgyz Republic
- Kyrgyz-Russian Academy of Education
- Выпуск: Том 230, № 5 (2018)
- Страницы: 688-694
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240808
- DOI: https://doi.org/10.1007/s10958-018-3770-8
- ID: 240808
Цитировать
Аннотация
We examine solutions of the problem on sufficient conditions that guarantee a lower estimate and tending to infinity of solutions and their derivatives up to the third order to a fourth-order linear integrodifferential Volterra equation. For this purpose, we develop a method based on the nonstandard reduction method (S. Iskandarov), the Volterra transformation method, the method of shearing functions (S. Iskandarov), the method of integral inequalities (Yu. A. Ved’ and Z. Pakhyrov), the method of a priori estimates (N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, and P. M. Simonov, 1991, 2001), the Lagrange method for integral representations of solutions to first-order linear inhomogeneous differential equations, and the method of lower estimate of solutions (Yu. A. Ved’ and L. N. Kitaeva).
Об авторах
S. Iskandarov
Institute of Theoretical and Applied Mathematics of the National Academy of Sciences of the Kyrgyz Republic
Автор, ответственный за переписку.
Email: mrmacintosh@list.ru
Киргизия, Bishkek
G. Khalilova
Kyrgyz-Russian Academy of Education
Email: mrmacintosh@list.ru
Киргизия, Bishkek
Дополнительные файлы
