Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space
- 作者: Rusakov O.V.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 225, 编号 5 (2017)
- 页面: 805-811
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239834
- DOI: https://doi.org/10.1007/s10958-017-3496-z
- ID: 239834
如何引用文章
详细
We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.
作者简介
O. Rusakov
St. Petersburg State University
编辑信件的主要联系方式.
Email: o.rusakov@spbu.ru
俄罗斯联邦, St. Petersburg
补充文件
