Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space
- Авторлар: Rusakov O.V.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: Том 225, № 5 (2017)
- Беттер: 805-811
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239834
- DOI: https://doi.org/10.1007/s10958-017-3496-z
- ID: 239834
Дәйексөз келтіру
Аннотация
We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.
Авторлар туралы
O. Rusakov
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: o.rusakov@spbu.ru
Ресей, St. Petersburg
Қосымша файлдар
