Homogenization Estimates in the Riemann–Hilbert Problem for the General Beltrami Equation on the Plane


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study homogenization for the Beltrami equation \( {A}_{\varepsilon }{u}_{\varepsilon}\equiv {\partial}_{\overline{z}}{u}_{\varepsilon }+{\mu}^{\varepsilon }{\partial}_z{u}_{\varepsilon }+{\nu}^{\varepsilon}\overline{\partial_z{u}_{\varepsilon }}=f \) with measurable ε-periodic coefficients με and νε, where ε is a small parameter. The coefficients of the equation satisfy the uniform ellipticity condition. The equation is considered in a bounded domain Ω of the complex plane with the Riemann–Hilbert condition on the boundary ∂Ω. For the resolvent \( {A}_{\varepsilon}^{-1} \) of this boundary value problem we obtain an approximation in the operator norm of the Sobolev space W1,2(Ω) with approximation error of order O(\( \sqrt{\varepsilon } \)).

作者简介

S. Pastukhova

Moscow Technological University (MIREA)

编辑信件的主要联系方式.
Email: pas-se@yandex.ru
俄罗斯联邦, 78, pr. Vernadskogo, Moscow, 119454

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017