Homogenization Estimates in the Riemann–Hilbert Problem for the General Beltrami Equation on the Plane


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study homogenization for the Beltrami equation \( {A}_{\varepsilon }{u}_{\varepsilon}\equiv {\partial}_{\overline{z}}{u}_{\varepsilon }+{\mu}^{\varepsilon }{\partial}_z{u}_{\varepsilon }+{\nu}^{\varepsilon}\overline{\partial_z{u}_{\varepsilon }}=f \) with measurable ε-periodic coefficients με and νε, where ε is a small parameter. The coefficients of the equation satisfy the uniform ellipticity condition. The equation is considered in a bounded domain Ω of the complex plane with the Riemann–Hilbert condition on the boundary ∂Ω. For the resolvent \( {A}_{\varepsilon}^{-1} \) of this boundary value problem we obtain an approximation in the operator norm of the Sobolev space W1,2(Ω) with approximation error of order O(\( \sqrt{\varepsilon } \)).

Авторлар туралы

S. Pastukhova

Moscow Technological University (MIREA)

Хат алмасуға жауапты Автор.
Email: pas-se@yandex.ru
Ресей, 78, pr. Vernadskogo, Moscow, 119454

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, 2017