Diagonal Complexes for Punctured Polygons
- 作者: Panina G.1
-
隶属关系:
- St.Petersburg State University
- 期: 卷 224, 编号 2 (2017)
- 页面: 335-338
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239571
- DOI: https://doi.org/10.1007/s10958-017-3418-0
- ID: 239571
如何引用文章
详细
It is known that taken together, all collections of nonintersecting diagonals in a convex planar n-gon give rise to a (combinatorial type of a) convex (n − 3)-dimensional polytope Asn called the Stasheff polytope, or associahedron. In the paper, we act in a similar way by taking a convex planar n-gon with k labeled punctures. All collections of mutually nonintersecting and mutually nonhomotopic topological diagonals yield a complex Asn,k. We prove that it is a topological ball. We also show a natural cellular fibration Asn,k → Asn,k−1. A special example is delivered by the case k = 1. Here the vertices of the complex are labeled by all possible permutations together with all possible bracketings on n distinct entries. This hints to a relationship with M. Kapranov’s permutoassociahedron.
作者简介
G. Panina
St.Petersburg State University
编辑信件的主要联系方式.
Email: gaiane-panina@rambler.ru
俄罗斯联邦, St. Petersburg
补充文件
