Diagonal Complexes for Punctured Polygons


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

It is known that taken together, all collections of nonintersecting diagonals in a convex planar n-gon give rise to a (combinatorial type of a) convex (n − 3)-dimensional polytope Asn called the Stasheff polytope, or associahedron. In the paper, we act in a similar way by taking a convex planar n-gon with k labeled punctures. All collections of mutually nonintersecting and mutually nonhomotopic topological diagonals yield a complex Asn,k. We prove that it is a topological ball. We also show a natural cellular fibration Asn,k → Asn,k−1. A special example is delivered by the case k = 1. Here the vertices of the complex are labeled by all possible permutations together with all possible bracketings on n distinct entries. This hints to a relationship with M. Kapranov’s permutoassociahedron.

Авторлар туралы

G. Panina

St.Petersburg State University

Хат алмасуға жауапты Автор.
Email: gaiane-panina@rambler.ru
Ресей, St. Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2017