On Graphs, Which Can be Drawn on an Orientable Surface with Small Number of Intersections on an Edge


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let k and g be nonnegative integers. A graph is said to be k-nearly g-spherical if it can be drawn on an orientable surface of genus g so that each edge intersects at most k other edges in interior points. It is proved that if k ≤ 4, then the edge number of a k-nearly g-spherical graph on v vertices does not exceed (k + 3)(v + 2g − 2). It is also shown that the chromatic number of a k-nearly g-spherical graph does not exceed\( \frac{2k+7+\sqrt{4{k}^2+12k+1+16\left(k+3\right)g}}{2} \). Bibliography: 4 titles.

作者简介

O. Samoilova

St. Petersburg State University

编辑信件的主要联系方式.
Email: geraolga91@gmail.com
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016