On Graphs, Which Can be Drawn on an Orientable Surface with Small Number of Intersections on an Edge


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let k and g be nonnegative integers. A graph is said to be k-nearly g-spherical if it can be drawn on an orientable surface of genus g so that each edge intersects at most k other edges in interior points. It is proved that if k ≤ 4, then the edge number of a k-nearly g-spherical graph on v vertices does not exceed (k + 3)(v + 2g − 2). It is also shown that the chromatic number of a k-nearly g-spherical graph does not exceed\( \frac{2k+7+\sqrt{4{k}^2+12k+1+16\left(k+3\right)g}}{2} \). Bibliography: 4 titles.

Sobre autores

O. Samoilova

St. Petersburg State University

Autor responsável pela correspondência
Email: geraolga91@gmail.com
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016