Atiyah–Patodi–Singer \( \eta \)-Invariant and Invariants of Finite Degree
- 作者: Trefilov A.N.1
-
隶属关系:
- St.Petersburg State University
- 期: 卷 212, 编号 5 (2016)
- 页面: 622-642
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237112
- DOI: https://doi.org/10.1007/s10958-016-2694-4
- ID: 237112
如何引用文章
详细
Let η be the Atiyah–Patodi–Singer invariant considered on smooth, compact, oriented, threedimensional submanifolds of ℝn, and let A be an additive subgroup of ℝ. The problem of computing the degree of invariants of the form η mod A is examined. Here, the functional definition of invariants of finite degree is used. (A similar approach is used in S. S. Podkorytov’s paper “Quadratic property of the rational semicharacteristic.”) The main results are as follows. If 1 ∉ A, then the degree is infinite. If \( \frac{1}{3}\in A \), then the degree is equal to 1. Bibliography: 10 titles.
作者简介
A. Trefilov
St.Petersburg State University
编辑信件的主要联系方式.
Email: aleksejtref@yandex.ru
俄罗斯联邦, St.Petersburg
补充文件
