Atiyah–Patodi–Singer \( \eta \)-Invariant and Invariants of Finite Degree
- Авторлар: Trefilov A.N.1
-
Мекемелер:
- St.Petersburg State University
- Шығарылым: Том 212, № 5 (2016)
- Беттер: 622-642
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237112
- DOI: https://doi.org/10.1007/s10958-016-2694-4
- ID: 237112
Дәйексөз келтіру
Аннотация
Let η be the Atiyah–Patodi–Singer invariant considered on smooth, compact, oriented, threedimensional submanifolds of ℝn, and let A be an additive subgroup of ℝ. The problem of computing the degree of invariants of the form η mod A is examined. Here, the functional definition of invariants of finite degree is used. (A similar approach is used in S. S. Podkorytov’s paper “Quadratic property of the rational semicharacteristic.”) The main results are as follows. If 1 ∉ A, then the degree is infinite. If \( \frac{1}{3}\in A \), then the degree is equal to 1. Bibliography: 10 titles.
Негізгі сөздер
Авторлар туралы
A. Trefilov
St.Petersburg State University
Хат алмасуға жауапты Автор.
Email: aleksejtref@yandex.ru
Ресей, St.Petersburg
Қосымша файлдар
