A Functional CLT for Fields of Commuting Transformations Via Martingale Approximation
- Авторы: Cuny C.1, Dedecker J.2, Volný D.3
-
Учреждения:
- Laboratoire MAS, Centrale-Supelec
- Université Paris Descartes
- Université de Rouen
- Выпуск: Том 219, № 5 (2016)
- Страницы: 765-781
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238684
- DOI: https://doi.org/10.1007/s10958-016-3145-y
- ID: 238684
Цитировать
Аннотация
We consider a field f \( \circ {T}_1^{i_1}\circ \dots \circ {T}_d^{i_d} \) , where T1, . . . , Td are completely commuting transformations in the sense of Gordin. If one of these transformations is ergodic, we give sufficient conditions in the spirit of Hannan under which the partial sum process indexed by quadrants converges in distribution to a Brownian sheet. The proof combines a martingale approximation approach with a recent CLT for martingale random fields due to Volný. We apply our results to completely commuting endomorphisms of the m-torus. In that case, the conditions can be expressed in terms of the L2-modulus of continuity of f.
Об авторах
C. Cuny
Laboratoire MAS, Centrale-Supelec
Автор, ответственный за переписку.
Email: christophe.cuny@ecp.fr
Франция, Chȃtenay-Malabry
J. Dedecker
Université Paris Descartes
Email: christophe.cuny@ecp.fr
Франция, Paris
D. Volný
Université de Rouen
Email: christophe.cuny@ecp.fr
Франция, Saint-Etienne du Rouvray
Дополнительные файлы
