A Functional CLT for Fields of Commuting Transformations Via Martingale Approximation
- Авторлар: Cuny C.1, Dedecker J.2, Volný D.3
-
Мекемелер:
- Laboratoire MAS, Centrale-Supelec
- Université Paris Descartes
- Université de Rouen
- Шығарылым: Том 219, № 5 (2016)
- Беттер: 765-781
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238684
- DOI: https://doi.org/10.1007/s10958-016-3145-y
- ID: 238684
Дәйексөз келтіру
Аннотация
We consider a field f \( \circ {T}_1^{i_1}\circ \dots \circ {T}_d^{i_d} \) , where T1, . . . , Td are completely commuting transformations in the sense of Gordin. If one of these transformations is ergodic, we give sufficient conditions in the spirit of Hannan under which the partial sum process indexed by quadrants converges in distribution to a Brownian sheet. The proof combines a martingale approximation approach with a recent CLT for martingale random fields due to Volný. We apply our results to completely commuting endomorphisms of the m-torus. In that case, the conditions can be expressed in terms of the L2-modulus of continuity of f.
Авторлар туралы
C. Cuny
Laboratoire MAS, Centrale-Supelec
Хат алмасуға жауапты Автор.
Email: christophe.cuny@ecp.fr
Франция, Chȃtenay-Malabry
J. Dedecker
Université Paris Descartes
Email: christophe.cuny@ecp.fr
Франция, Paris
D. Volný
Université de Rouen
Email: christophe.cuny@ecp.fr
Франция, Saint-Etienne du Rouvray
Қосымша файлдар
