A Functional CLT for Fields of Commuting Transformations Via Martingale Approximation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider a field f \( \circ {T}_1^{i_1}\circ \dots \circ {T}_d^{i_d} \) , where T1, . . . , Td are completely commuting transformations in the sense of Gordin. If one of these transformations is ergodic, we give sufficient conditions in the spirit of Hannan under which the partial sum process indexed by quadrants converges in distribution to a Brownian sheet. The proof combines a martingale approximation approach with a recent CLT for martingale random fields due to Volný. We apply our results to completely commuting endomorphisms of the m-torus. In that case, the conditions can be expressed in terms of the L2-modulus of continuity of f.

Sobre autores

C. Cuny

Laboratoire MAS, Centrale-Supelec

Autor responsável pela correspondência
Email: christophe.cuny@ecp.fr
França, Chȃtenay-Malabry

J. Dedecker

Université Paris Descartes

Email: christophe.cuny@ecp.fr
França, Paris

D. Volný

Université de Rouen

Email: christophe.cuny@ecp.fr
França, Saint-Etienne du Rouvray

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016