Local Boundary Regularity for the Navier–Stokes Equations in Non-Endpoint Borderline Lorentz Spaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Local regularity up to the flat part of the boundary is proved for certain classes of distributional solutions that are LL3,q with q finite. The corresponding result for the interior case was recently proved by Wang and Zhang, see also Phuc’s paper. For local regularity up to the flat part of the boundary, q = 3 was established by G. A. Seregin. Our result can be viewed as an extension of it to L3,q with q finite. New scale-invariant bounds, refined pressure decay estimates near the boundary and development of a convenient new ϵ-regularity criterion, are central themes in providing this extension.

Sobre autores

T. Barker

University of Oxford

Autor responsável pela correspondência
Email: tobias.barker@seh.ox.ac.uk
Reino Unido da Grã-Bretanha e Irlanda do Norte, Oxford

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, 2017