Local Boundary Regularity for the Navier–Stokes Equations in Non-Endpoint Borderline Lorentz Spaces
- Авторлар: Barker T.1
-
Мекемелер:
- University of Oxford
- Шығарылым: Том 224, № 3 (2017)
- Беттер: 391-413
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239611
- DOI: https://doi.org/10.1007/s10958-017-3424-2
- ID: 239611
Дәйексөз келтіру
Аннотация
Local regularity up to the flat part of the boundary is proved for certain classes of distributional solutions that are L∞L3,q with q finite. The corresponding result for the interior case was recently proved by Wang and Zhang, see also Phuc’s paper. For local regularity up to the flat part of the boundary, q = 3 was established by G. A. Seregin. Our result can be viewed as an extension of it to L3,q with q finite. New scale-invariant bounds, refined pressure decay estimates near the boundary and development of a convenient new ϵ-regularity criterion, are central themes in providing this extension.
Авторлар туралы
T. Barker
University of Oxford
Хат алмасуға жауапты Автор.
Email: tobias.barker@seh.ox.ac.uk
Ұлыбритания, Oxford
Қосымша файлдар
