Local Boundary Regularity for the Navier–Stokes Equations in Non-Endpoint Borderline Lorentz Spaces


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Local regularity up to the flat part of the boundary is proved for certain classes of distributional solutions that are LL3,q with q finite. The corresponding result for the interior case was recently proved by Wang and Zhang, see also Phuc’s paper. For local regularity up to the flat part of the boundary, q = 3 was established by G. A. Seregin. Our result can be viewed as an extension of it to L3,q with q finite. New scale-invariant bounds, refined pressure decay estimates near the boundary and development of a convenient new ϵ-regularity criterion, are central themes in providing this extension.

Авторлар туралы

T. Barker

University of Oxford

Хат алмасуға жауапты Автор.
Email: tobias.barker@seh.ox.ac.uk
Ұлыбритания, Oxford

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, 2017