On Local Combinatorial Formulas for Chern Classes of a Triangulated Circle Bundle


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A principal circle bundle over a PL polyhedron can be triangulated and thus obtains combinatorics. The triangulation is assembled from triangulated circle bundles over simplices. To every triangulated circle bundle over a simplex we associate a necklace (in the combinatorial sense). We express rational local formulas for all powers of the first Chern class in terms of expectations of the parities of the associated necklaces. This rational parity is a combinatorial isomorphism invariant of a triangulated circle bundle over a simplex, measuring the mixing by the triangulation of the circular graphs over vertices of the simplex. The goal of this note is to sketch the logic of deducing these formulas from Kontsevitch’s cyclic invariant connection form on metric polygons.

Sobre autores

N. Mnev

St. Petersburg Department of Steklov Institute of Mathematics; Chebyshev Laboratory, St. Petersburg State University

Autor responsável pela correspondência
Email: mnev@pdmi.ras.ru
Rússia, St. Petersburg

G. Sharygin

Institute for Theoretical and Experimental Physics; Moscow State University

Email: mnev@pdmi.ras.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2017