On Local Combinatorial Formulas for Chern Classes of a Triangulated Circle Bundle


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A principal circle bundle over a PL polyhedron can be triangulated and thus obtains combinatorics. The triangulation is assembled from triangulated circle bundles over simplices. To every triangulated circle bundle over a simplex we associate a necklace (in the combinatorial sense). We express rational local formulas for all powers of the first Chern class in terms of expectations of the parities of the associated necklaces. This rational parity is a combinatorial isomorphism invariant of a triangulated circle bundle over a simplex, measuring the mixing by the triangulation of the circular graphs over vertices of the simplex. The goal of this note is to sketch the logic of deducing these formulas from Kontsevitch’s cyclic invariant connection form on metric polygons.

作者简介

N. Mnev

St. Petersburg Department of Steklov Institute of Mathematics; Chebyshev Laboratory, St. Petersburg State University

编辑信件的主要联系方式.
Email: mnev@pdmi.ras.ru
俄罗斯联邦, St. Petersburg

G. Sharygin

Institute for Theoretical and Experimental Physics; Moscow State University

Email: mnev@pdmi.ras.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017